Micro-CHP in the United States

Steve Fischer
Oak Ridge National Laboratory

Micro-CHP Workshop Greenbelt, Maryland June 11, 2003

Literature Search

- Technologies Identified
 - Stirling Engine-Generator (UK)
 - Residential Fuel Cell (UK)
 - IC Engine-Generator (Japan)
 - Steam Generator Topping Cycle (US)
- Operating Strategy
 - Track thermal load
 - Excess power to grid via net metering

Analysis: Data & Sources

- Energy Information Administration
 - State-wide average residential fuel and electricity costs
 - Residential heating energy consumption
 - Seven census regions
 - Four most populous states

ASHRAE

- Heating degree days for 286 U.S. cities
- Internet
 - Heating degree days for 18 regions in U.K.
 - One electric and one gas/fuel rate in U.K.

Analysis: Micro-CHP Assumptions

Parameter	Stirling Engine- Generator	Fuel Cell	Steam Generator Topping Cycle
baseline	Std Furnace	Std Furnace	High Eff. Furnace
η _{baseline furnace/boiler}	0.65	0.65	0.92
Incremental First Cost	\$1270 / kW	\$1500 / kW	\$1000
O&M Costs	\$0 / year	\$150 / kW / year	\$100 / 5000 hrs
$\eta_{ m engine}$	0.25	0.40	
η _{burner}	1.00	1.00	
$\varepsilon_{ m HRHX}$	0.60	0.45	
η _{steam turbine}			0.50
$\Delta T_{approach}$			60°F
			STATE OF THE PARTY

Stirling-Engine Generator or Fuel Cell with Supplemental Gas Burner

Steam Turbine Topping Cycle

Results:

- Stirling Engine & Steam Topping Cycle
 - Modeling results consistent with references
 - Simple payback less than 10 years only in New England, New York, and Alaska
 - Payback primarily dependent on electric cost
- Fuel Cell
 - Simple payback less than 12 years only in Alaska
 - Less than 25 years in Alaska, New York, Vermont, and Michigan

Average Household Heating Loads

Cost of Fuel

Simple Payback and Fuel Consumption

Simple Payback and HDD

Cost of Fuel

Payback vs. Cost of Electricity

Residential Fuel Cell: Simple Payback

Steam Turbine Topping Cycle: Simple Payback

Stirling Engine Generator: Simple Payback

Stirling Engine Micro-CHP: 5 years or less

Stirling Engine Micro-CHP: 10 years or less

Stirling Engine Micro-CHP: 15 years or less

Stirling Engine Micro-CHP: 20 years or less

Stirling Engine Micro-CHP: 25 years or less

Stirling Engine Micro-CHP: 30 years or less

Stirling Engine Micro-CHP: 35 years or less

Stirling Engine Micro-CHP: 40 years or less

Stirling Engine Micro-CHP: 45 years or less

Stirling Engine Micro-CHP: 50 years or less

Cost of Electricity

Cost of Electricity: \$0.15 / kWh or more

Cost of Electricity: \$0.14 / kWh or more

Cost of Electricity: \$0.13 / kWh or more

Cost of Electricity: \$0.12 / kWh or more

Cost of Electricity: \$0.11 / kWh or more

Cost of Electricity: \$0.10 / kWh or more

Cost of Electricity: \$0.09 / kWh or more

Cost of Electricity: \$0.08 / kWh or more

Cost of Electricity: \$0.07 / kWh or more

Cost of Electricity: \$0.06 / kWh or more

Cost of Electricity: \$0.05 / kWh or more

Conclusions:

- Micro-CHP appears viable in some markets
 - High electric rates
 - High heating loads
- Greatest potential (simple payback under 15 years)
 - New York
 - New England States
 - Alaska
 - Michigan
 - New Jersey